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Abstract

The study of Evolutionary Significant Unit (ESU) is important in ecology. The long-snouted
seahorse lineage of the Thau lagoon (Hérault, France) is an ESU and is studied by the association
Peau-Bleue. In order to better understand this specie and better protect it, a comprehensive census
is necessary. However, "manual" identification on photograph is long and hard for scientists. To
help them, we are going to use deep learning methods to support their individual re-identification
(re-ID). Animal re-ID using deep learning methods is new and is becoming more and more
popular. Recent studies have shown that Convolutional Neural Network (CNN) trained with a
triplet loss are able to accurately identify individuals from numerous species. In this study, we
are going to prove that this method can also work on a difficult specie, because it’s aquatic and
is expert in camouflage, the long-snouted seahorse.
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1 Introduction

The long-snouted seahorse lineage of the Thau lagoon (Hérault, France) differs genetically and morpho-
logically from the marine population of the same species (Hippocampus guttulatus); it is endemic to a
few Occitanian lagoons only (less than 150 square km). It is thus considered an Evolutionary Significant
Unit (ESU), which deserves being studied and managed as such (Riquet et al., 2019). Involved in the
scientific study of this population, the association Peau-Bleue and its partners have engaged in the chal-
lenging project of a comprehensive underwater census of Thau lagoon seahorses. The census necessitates
to individually identify seahorses from underwater photographs. Individual identification is necessary to
estimate various demographic parameters using models of sighting-resighting ("capture-recapture"; pop-
ulation size, dispersal, longevity), but also to better understand the life history (growth, reproductive
cycles. . . ), the behaviour (inter-individual relationships, pair fidelity, day vs. night behaviour. . . ) and the
ecology (habitat preferences over seasons) of seahorses. This information would ultimately allow setting
an efficient conservation policy for this charismatic species.

The re-identification (re-ID) of animal individuals has been a long-standing challenge for research in
ecology. Techniques such as tagging, scarring, banding, and DNA analyses of hair follicles or feces are
accurate but expensive, intrusive to the animal and laborious for the field research team (Krebs, 1989;
Ferreira et al., 2020). Alternatively, re-ID can be made by visual identification based on natural marks,
for example on pictures from camera traps. However, it usually requires months of training and practical
experience to be able to accurately re-identify individuals of a given species, and even so, visual re-ID
remains subject to human error and bias (Foster and Harmsen, 2012; Meek et al., 2013). The technique
is also time consuming and expensive because of the large quantity of data to analyse manually.

Models of computer vision can save time to researchers, opening the way to big data analyses in animal
demography. The first computer vision models used to identify animal individuals were developed in the
1990s (Whitehead, 1990). Historically, species-specific algorithms were created to extract features from
the pictures, and traditional machine learning models like support vector machine (Hearst et al., 1998)
were applied to these features to classify individuals. Nowadays, neural networks and deep learning
model like Convolutional Neural Network (CNN) (Krizhevsky et al., 2012) do not require hand-crafted
features anymore: the model automatically builds and selects features that are most efficient for achieving
the task of individual identification, thereby circumventing the limitations of arbitrarily creating and
selecting potentially important features.

Conventional CNN-based re-ID methods are classification tasks with one class per individual and
require a large number of pictures per class to train the recognition model. To re-identify new individuals,
the model needs to be retrained with pictures of these new individuals. This approach is referred to as
closed-set re-ID. In contrast, open-set re-ID allows re-identification of individuals not present in the
training data set. The problem of open-set re-ID can be formulated as a one-shot learning task, in which
a single image is used as reference for a class. For animal re-ID, this means that when an individual is
first sighted, its image is used as reference. Then, when the individual is re-sighted, the model should
successfully classify the image with the reference image. Such a task can be solved using a similarity
comparison network. In the context of Re-ID, this type of network is trained to distinguish if two images
represent the same individual or not.

The goal of my project is to develop an AI-based solution to help scientists in their seahorse census.
The first challenge is to extract the relevant part of the pictures. Seahorses like to hide and, in most of
the pictures, the seahorse represents only a small percentage of the pixels and the majority of the image
represents only environment/background. Our solution is to use Yolo, a simple object detection network,
to crop the pictures and have images centered on the head of the seahorses, where scientists assume cues
for individual identification are mostly present. The second challenge is to be able to use our solution
in open population. Indeed, the population of seahorses is different each year, with new individuals
being regularly discovered (either immigrants or individuals previously undetected). An approach named
"similarity comparison network" using a triplet loss has been shown to tackle this challenge with high
accuracy on several species including: human, chimpanzee, humpback whale, fruit flies and Siberian
tiger (Schneider et al., 2022). However, our case study is more challenging. On the one hand, seahorses
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Figure 1: Pre-processing of turtle images before the artificial neural network

are known for their exceptional camouflage capacities. Seahorses can change color and are sometimes
covered with algae which help them to hide in their habitat. On the other hand, lagoons are ever changing
environments, for example because of algae bloom greening the water during the summer season, and
sudden in-fillings by adjacent rivers during floods, which brings in sediment-rich, turbid water. These
create harsh environmental conditions that may hamper the use of the dotted pattern present on the head,
which is traditionally used by scientists to identify individuals. All these reasons make the long-snouted
seahorse a good biological model for testing the performances of state-of-the-art methods in open-set
re-ID.

Two issues remain : i) adapt the current models used on terrestrial animals to aquatic animals, and ii)
train the models to identify individuals in harsh environmental conditions. For both of these challenges,
we can simply use data augmentation. We can recreate the effects of the environment like change in color
and luminosity or particles in suspension between the individual and the camera. We can also mimic the
difficulty to identify the individuals on certain photos because they are hidden or cover with algae.

In this work, we have trained Yolov5 to crop the pictures with a focus on the head of the seahorses.
We also have investigated which data augmentations could simulate the variety of color, luminosity and
particles in suspension that can be encountered in the lagoon. Then, we searched for the best resolution
for our image. The white dots on the seahorses disappear with low resolutions. We used the tensorflow
implementation of EfficientNet to test different models with different input sizes. Finally, during the
remaining time, we started to test variation on the architecture to improve the model performances. Our
ultimate goal is to have a complete pipeline for seahorse re-ID in open population.

2 State of the art

For decades, animal re-ID was made with custom species-specific algorithms created to extract certain
known features from the species of interest. Only recently, deep learning approaches have started to
be used for animal re-ID. The first works using computer vision for re-ID were used for human re-ID.
Many studies have demonstrated well-performing methods using conventional CNNs and large amount
of training data. Studies have shown that human re-ID can be made with pictures from mobile devices
(Lisanti et al., 2015), which show potential for animal re-ID with pictures from camera traps.

With the growing success a human re-ID, animal re-ID potential grew. One of the first studies pub-
lished for animal re-ID with deep learning used an ensemble of neural networks to re-ID green turtle
individuals from pre-processed pictures (see figure 1) in a closed population (Carter et al., 2014). This
work has been considered a large success and is still used to monitor the green turtle population in the
southern Great Barrier Reef.

Later works often considered great ape species for a variety of reasons like conservation related ques-
tions. Most of the great apes studied are in closed environment. It means that a conventional network
with a fixed number of individuals to identify is usable. Studies have shown the improved accuracy of
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Figure 2: Examples of pictures of whales and toad. The pictures are not underwater.

deep learning models over previous methods on chimpanzee re-ID. One study (Freytag et al., 2016) con-
sidered two data sets, C-Zoo and C-Tai, and reported accuracy of 92.0% and 75.7% in comparison to the
original accuracy of 84.0% and 68.8% with the Support Vector Machine method (Loos and Ernst, 2013).
Another study used an object detection network to crop the images on the faces of gorillas and do re-ID
upon those faces (Brust et al., 2017). This shows that object detection can be used to find certain part of
an animal on an image. Lastly, researchers have successfully tracked and identified 23 chimpanzees on
video using a CNN (Schofield et al., 2019).

While the accuracy increases and new complex tasks are solved in closed population, similarity com-
parison networks offer a promising solution for open population. Similarity comparison networks origi-
nate from "Siamese networks" first developed in 1994 to detect signature forgery (Bromley et al., 1993).
In recent year, similarity comparison networks have become popular within ecology. One study has
shown the potential of using contrastive loss for animal re-ID, considering three species: chimpanzees,
lemurs, and golden monkeys (Deb et al., 2018). They defined three performance metrics for animal re-
ID : verification, if two images are from the same individual, closed-set identification, if an individual is
present in a given set, and open-set identification, if an individual is present in a given set or absent from
the set). Accuracies of the verification, closed-set, and open-set were respectively for lemurs: 83.1%,
93.8%, 81.3%; golden monkeys: 78.7%, 90.4%, 66.1%; and chimpanzees: 59.9%, 75.8%, and 37.1%.
These results demonstrate that open-set Re-ID is doable with terrestrial animals.

For aquatic animals, individuals of humpback whales and western leopard toads have been success-
fully re-ID with an object detector and a similarity comparison network working in tandem (Kabuga,
2019). If this work shows that aquatic animals can be re-ID using similarity comparison, the pictures
were not taken underwater, and thus the special environmental conditions seen on underwater images
were not investigated (see figure 2). With this respect, a study conducted on zebrafishes is more appro-
priate (Haurum et al., 2020); however, this study used images taken in a perfectly controlled (laboratory)
environment, thus with clear water and without complex background, and was conducted on a close pop-
ulation. Moreover, the marks used to identify zebrafish individuals are big in comparison to the body of
the fish. In our case, the white dots are harder to see and the patterns harder to notice.
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If re-ID was almost exclusively used on species with descript phenotypic patterns, some studies tried to
use similarity comparison network to identify species with non-descript patterns. One example is the re-
ID of brown bears using facial features (Clapham et al., 2020). The facial features of bears are not distinct
markings that can be used by humans to identify an individual. The study shows that, using in tandem
face localization and similarity comparison network, brown bear can be successfully re-identified. This
success gives great hopes when generalizing to species whether or not they have descript or non-descript
phenotypic patterns.

Similarity comparison network initially used the contrastive loss during training. Recent studies have
shown that the triplet loss outperforms the contrastive loss. For human re-ID, two studies from 2014
and 2015 have demonstrated the higher performances of triplet loss for human face recognition (Schroff
et al., 2015; Hoffer and Ailon, 2014). This increase in performance in human re-ID suggests a similar
increase in performance in animal re-ID. This assumption is validated by three studies showing high
performances for dolphin and seal re-ID (Bouma et al., 2019; Nepovinnykh et al., 2020; Chelak et al.,
2021). Finally, a very recent study showed that the triplet loss outperforms the contrastive loss in animal
re-ID for 5 species (Schneider et al., 2022). In addition, in the fives species, there is an aquatic species
(humpback whales) and a species with non-descript phenotypic pattern (fruit flies).

We want to test the triplet loss on the long-snouted seahorse, because it’s an aquatic species with
underwater images taken in its natural environment, this species is expert in camouflage, being often
hidden or covered with algae, and it has descript phenotypic patterns but they are difficult to perceive
(small and potentially confounded with sand particles in suspension in the water), and are asymmetrical.

3 Method et data

3.1 Data from Peau-Bleue

In 2005, the association Peau-Bleue made an alarming observation. While seahorses were in the pro-
cess of being depleted worldwide, we knew virtually nothing about the seahorses on our coast. That is
why the "programme EnQuête d’Hippocampes" was launched in response to the urgent need to study
European seahorses, to estimate the fragility of their populations, the vulnerability of their habitats but
also to raise public awareness of their preservation. Since then, it has been extended to other species of
the Syngnathidae family, notably species of genus Syngnathus, some of which are probably even more
vulnerable than seahorses.

One project, called "Hippo-THAU", aims to study the seahorse population in the Thau lagoon. Since
2020, this project includes a comprehensive census. Members of the association have started collecting
pictures of seahorses in the studied area and scientists have "manually" identified individuals by visual
comparison of the photos. Older photos were also used, even though they were not taken for the pur-
pose of individual identification. Counting older photos from 2018 and 2019 and recent photos made
specifically from re-ID from 2020 and 2021, the seahorse image database includes thousands of photos
of hundreds of individuals. After I selected only the photos where the head of the seahorse is visible, we
were left with 14,638 photos representing 342 individuals, all identified with high level of confidence by
the same person (Sylvie Louisy).

The next campaigns will bring a large number of new photos and the association wishes to shift from a
visual, time-consuming, individual identification to a fully automated, or semi-automated process based
on artificial intelligence. Initially, these new photos should have been used for testing the algorithm
but, due to delays in acquiring these photos, we split the photos we already have into two datasets: one
for training and validating and one for testing the algorithm. The first dataset (train-validation dataset)
includes 13,204 photos of 176 individuals, with at least 20 pictures per individual. The second dataset
(test dataset) includes 1,434 photos of 166 individuals. Each individual is represented by 1 to 19 photos.
This split between train-validation and test datasets was made on the individual level (no individual is
present in both datasets), for two reasons. First, we wanted a split around 90/10 for train-validation/test,
as typically done in machine learning. Second, the triplet loss required at least 2 pictures for each
individual (anchor and positive). But the implementation of the triplet loss we are using searches for the
hardest triplet. This means that during training, the more photos we have per individual, the more likely
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Figure 3: Diagram of the pipeline

it is that the model will learn meaningful features to differentiate individuals.

3.2 Pipeline

To facilitate the work of the scientists of the Peau-bleue association, we need to create a complete
pipeline. The first task is to crop the photos to ensure that most of each picture display the head and
the upper part of the body, and a minimum of surrounding environment. Then, the cropped image is
sent to the trained model that produces an embedding for this image. This embedding is then compared
to the ones in the reference database. The output of our pipeline is a list of candidate individuals and a
suggestion of whether or not their identity matches the queried individual. This pipeline corresponds to
open-set re-ID because the reference database can include pictures of individuals that were not present
during model training. In our case, the test set contains exclusively pictures of individuals not present
during training; the results presented here are thus conservative regarding the future use of our pipeline
by the scientists.

3.2.1 Yolov5

In order to crop the photos around the head and the upper body part of the seahorses, I have trained the
Pytorch implementation of Yolov5. To that end, during my internship I have annotated all 14,638 photos
with a square centered on the head of the seahorse. Since the task of cropping is independent of the
individual identity, the photos of the train-validation dataset were shuffle and split between crop-train,
crop-validation and crop-test datasets with respectively 11,724, 1,427 and 1,487 photos. No customized
data augmentation was added at this point because Yolov5 has its own augmentation built-in. We used
the largest architecture possible with a reasonable training time with our computing power : the large
architecture Yolov5l. I used the GitHub implementation of Yolov5 which include tutorials and scripts to
train and test the CNN.

3.2.2 Data augmentation

Once the photos have been cropped, for the training step of the re-ID, we need to recreate all the diversity
of non-informative variation between same-individual pictures that are caused by underwater environ-
mental conditions. We used the package imgaug, which has been already used in animal re-ID (Miele
et al., 2021) but only to manipulate the image without visual modifications. I used it to change the size
of the photos and add padding when necessary. I also used the rotation function. Indeed seahorses can
sometimes be upside-down or leaning because of the current. I used a function to change the luminosity
of the photos, which depends on the flash used and the camera settings, the time of the day and the depth.
I used a function to change the coloration of the photos to recreate the changing color of the water. I used
two functions to create particles and blur on the photos to mimic turbid water with sand and other small
particles in suspension between the seahorse and the camera. With the help of the scientists from the
Peau-Bleue association, I identified the possible range of values for each augmentation. During prelimi-
nary experiments, too much data augmentation, i.e. a probability to close to 1, induced under-fitting. In
order to avoid this issue, each augmentation is applied to an image of a batch with a probability of 50%,
and when it is applied, the value of the augmentation (e.g., the rotation angle) is picked randomly from
the selected range. There are 5 types of data augmentation : Rotation, the image is rotated by an angle
between -180 and 180, Blur, the image is blurred by a kernel of 2 or 3 pixels, Salt, random white pixels
on the image, Temperature, change the color of the image (cold = blue, hot = red), Luminosity, increase
or decrease of the luminosity in the picture.
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Figure 4: Resolutions for each EfficientNet architecture (from Keras docs)

Figure 5: Diagram illustrating one training step with the triplet loss, from "The intuition of Triplet Loss"
by Susmith Reddy on the website Medium. After the training step, the distance between the anchor and
the positive input decreases and the distance between the anchor and the negative input increases.

3.2.3 Triplet loss
Once the data augmentations set, we need to find the optimal resolution for the photos. The original
photos were taken with really high resolutions. When a seahorse is "manually" re-identified, the scientist
search for patterns in the white dots on the head of the individual. When we lower the resolution, some
of these white dots disappear. The resolution must be high enough to discern the dots, but not too
high because higher resolution means bigger model, which requires more time and data to be trained.
We tested different TensorFlow implementation of EfficientNet, a CNN with 8 architectures with input
resolution varying between 224x224 and 600x600 (see figure 4).

To train these architectures, we use the triplet loss (Schneider et al., 2022) :

L(A,P,N) = max(||f(A)− f(P )||2 − ||f(A)− f(N)||2 + α, 0) (1)

Where A is an anchor input, P is a positive input of the same class as A, N is a negative input of
a different class from A, α is a margin between positive and negative pairs, and f is an embedding.
This loss function reduces the distance between the anchor embeddings and the positive embeddings
and increases the distance between the anchor embeddings and the negative embeddings (see figure 5).
In the end, the network can generate embeddings for any new image, which can be compared with the
embedding of known individuals : a small distance between two embeddings means that the two images
are likely from the same individual, a high distance between two embeddings means the two images are
likely from two different individuals.

We used one variation of the triplet loss implemented in TensorFlow : the TripletSemiHardLoss. This
implementation makes the positive distance (between a pair of embeddings with the same label) smaller
than the smallest negative distance (between a pair of embeddings with different labels). This smallest
negative distance is among distances greater than the positive distance plus a margin constant in the
considered mini-batch. If this negative distance doesn’t exist, the largest one is used instead (Schroff et
al., 2015). The TensorFlow implementation can use 3 distance metrics : L2, squared-L2 (Euclidean) and
angular.
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3.3 Re-ID
Once a model is trained with the triplet loss, we use it to create the embeddings for every photos in the
database. An embedding describes an image as it is encoded by the neural network in the layer before
the terminal triplet loss calculus. It corresponds to a low-dimensional (a few hundreds or thousands)
vector.The embedding of any given picture is then compared with those in the database. To do so, we use
the Scikit-Learn implementation of the Nearest Neighbors with either L2, Euclidean or cosine metrics.
This Nearest Neighbors model is used to get the top k closest embeddings/photos (with the given metric)
of any given query (embedding from a new photo). We calculate the Accuracy top-k for each query as :

Acck =

{
1 if top-k embeddings contain the query identity
0 otherwise

(2)

We then define 2 metrics : the Cumulative Matching Characteristics top-k (CMC@k) and the
mean Average Precision at k (mAP@k). CMC@k is defined as the mean of the Accuracy top-k.
This metric only shows if the correct individual is in the top-k without considering the order. Our
mAP@k is a variant of the one used for the Kaggle challenge "Humpback Whale Identification"
(https://www.kaggle.com/competitions/humpback-whale-identification/overview/evaluation) define as :

mAP@k =
1

N

N∑
i=1

k∑
j=1

P (j) ∗ rel(j) (3)

with N the number of queries, P (j) the precision at cutoff j (meaning TruePositive
TruePositive+FalsePositive for

the top-j) and rel(j) an indicator function equaling one if the embedding at rank j is the same individual
and it’s the first match. This metric only takes into account the first match (like the CMC@k) but further
considers position of the match within the top-k. In our case, we don’t need more information because
the top-k photos will be given to the scientists to check the results and, if they agree with the match, they
will add the photo to the database.

4 Experiences and results

4.1 Detection
Using the recommended hyper-parameters from GitHub tutorials, we trained a highly accurate seahorse
detector with crop-train dataset for training, crop-validation for validation and crop-test for testing. Train-
ing was set to 600 epochs, but stopped at epoch 390 ("early-stop" procedure), after 100 epoch without
improvement. The best performance in validation were reached at epoch 290 (see Table 1). The cor-
responding confusion matrix (see Figure 6) shows that 99% of the seahorses are detected (recall), 1%
of the seahorses are not detected (1-recall) and, since there is only the class Hippocampus, 100% of the
wrong Hippocampus detection are background. Checking some batches from the validation, we can cor-
roborate the conclusions made from the confusion matrix : the vast majority of individuals are detected
with high confidence, a few are missed falsely detected. But we can also add that the false defections
seem to have lower confidence score (example on Appendix D). This is confirmed with the testing (see
Table 2) : increasing the confidence threshold increases the precision and decreases the recall. Given the
high performance with 0.5 confidence threshold and 0.5 Intersection-Over-Union threshold, we have not
search for better parameters.

Precision Recall mAP@.5 mAP@.95
0.995 0.99 0.995 0.792

Table 1: Validation performances of Yolov5 after first training
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Confidence threshold IOU threshold Precision Recall mAP@.5 mAP@.95
0.5 0.2 0.992 0.988 0.993 0.796
0.8 0.2 0.995 0.976 0.987 0.794
0.5 0.5 0.991 0.991 0.994 0.797

Table 2: Testing performances of Yolov5 after first training

Figure 6: Confusion Matrix of Yolov5 validation

4.2 Re-Id
The first tests made on Google Colab with only 5% of the photos showed that increasing the size of
the embedding decreased the performances. Furthermore, the architectures from EfficientNet B4 and
above were extremely long to train, with very poor performances. Thus, when searching for the best
EfficientNet architecture, we tested only architectures from B0 to B3 and only added to the base model
a dense layer of size 2,048, a dropout layer with a varying value and a final dense layer (the embedding)
of size 128. The results (see Appendix E) showed that architecture B3 with a low dropout and squared-
L2 metric for the triplet loss was the best combination. However, all the combinations had the same
problem : a big gap between the training and validation loss (see Figure 7). This situation is a classic
over-fitting example where the model increases its performances on the training data without increasing
its performances on the validation data. One simple solution is to use dropout layers (Srivastava et
al., 2014). But in our case, we already have a dropout layer and increasing it’s value decreased the
performances. Another solution is to decrease the batch size (Kandel and Castelli, 2020). However, upon
investigation, I found out that the problem doesn’t rely on the batch size but on the batch constitution.
To create a batch when training with a triplet loss, we can choose how many individuals and how many
images per individual we want. Initially, we used 3 classes with 10 images per class for each batch. With
lots of images for only a few classes, the model learned the differences for each pair of classes, which
caused over-fitting. To limit this effect, we tested 10 classes with 3 images per class, and then 15 classes
with 2 images per class. With many classes per batch and only a few images per class, the model learns
differences between multiple classes and is forced to find them between the few images per class. We
can see the improvement in Table 3 with the performances for the model with EfficientNetB3, dropout
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0.1, squared-L2 for the triplet metric and Euclidean for evaluation metric. Once the over-fitting problem
resolved, we can remove the dropout layer which seems to have a negative effect on the performances.
In addition, we test other sizes for the two dense layers (see the results in Table 4).

Figure 7: Loss for the training (train) and validation (test) with the combination : EfficientNetB3 / 0.1 /
squared-L2

nb of classes nb of images per class CMC@1 CMC@5 mAP@1 mAP@5
3 10 0.58926081 0.77405858 0.58926081 0.65983264
10 3 0.65271967 0.81868898 0.65271967 0.71672478
15 2 0.70083682 0.85704324 0.70083682 0.76155277

Table 3: Performance with different combination of number of classes and number of images per class

size first dense size second dense CMC@1 CMC@5 mAP@1 mAP@5
2048 64 0.75592748 0.89539749 0.75592748 0.8100186
1024 64 0.73361227 0.87866109 0.73361227 0.78863319
512 64 0.68967922 0.84239888 0.68967922 0.74868666

2048 128 0.76011158 0.89748954 0.76011158 0.81283124
1024 128 0.72663877 0.86052999 0.72663877 0.77842864
512 128 0.67921897 0.84518828 0.67921897 0.74307299

Table 4: Performance with different sizes for the dense layers
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5 Conclusions and perspectives

Due to several problems with the server used for GPU computation, there is still a lot of architectures
to train and evaluate. For example, we could change the number of dense layers and their size, further
improve which images are chosen for each batch and search for better parameters for the data augmen-
tations. We should then find a way to calculate a threshold to be able to tell scientists when an individual
is more likely to be new or already in the database. We should then find a metric to give a probability for
each individual to be the one in the photo of the query.

Successfully identifying seahorse from underwater photographs is essential for a comprehensive cen-
sus of the population. Helping the scientists with this identification task will in the end help the con-
servation effort of this evolutionary significant unit. We have proven that the triplet loss can be used
even with difficult species like seahorse and on open-set. The combination of data augmentations, even
with untuned parameters, and carefully selected batch has given good results. This work lays the ground
for new studies, for instance how to take into account asymmetry in animal re-ID. Indeed long-snouted
seahorses have lateral asymmetry in their white dot patterns, which creates different shapes and patterns
on each side of the individual (see an example with figure 11 and figure 12 in appendix A). For the asym-
metry, we thought of three solutions : use two classes per individual for each side, use multitask learning
to make the network differentiate left and right side and use a Neural Structured Network (Gopalan et
al., 2021) allowing to set the relationship between the two sides of each individual as a prior.
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Appendix A : CEFE brochure

Figure 8: CEFE brochure : page 1
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Figure 9: CEFE brochure : page 2
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Figure 10: CEFE brochure : page 3
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Appendix B : Individual F028 - example for asymmetry

Figure 11: Picture of the left side of the individual F028

Figure 12: Picture of the right side of the individual F028
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Appendix C : Examples of Yolov5 performances in validation set

Figure 13: Annotations of a validation batch for Yolov5 training

Figure 14: Predictions of the same validation batch for Yolov5 training
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Appendix D : Training results for different EfficientNet architectures

Figure 15: Training results for different EfficientNet architecture : part 1

Figure 16: Training results for different EfficientNet architecture : part 2
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Figure 17: Training results for different EfficientNet architecture : part 3

Figure 18: Training results for different EfficientNet architecture : part 4
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Figure 19: Training results for different EfficientNet architecture : part 5
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